Dijital Ölçme ve Değerlendirme Araştırmaları Dergisi
Abbreviation: DMER | ISSN (Online): 2791-7304 | DOI: 10.29329/dmer

Orjinal Araştırma Makalesi    |    Açık Erişim
Dijital Ölçme ve Değerlendirme Araştırmaları Dergisi 2021, Cil. 1(1) 1-21

2 Parametreli Lojistik Modelde Normal Dağılım İhlalinin Madde Parametre Kestirimine Etkisinin İncelenmesi

İbrahim Alper Köse & İsmail Başaran

ss. 1 - 21   |  DOI: https://doi.org/10.29329/dmer.2021.285.1

Yayın tarihi: Haziran 30, 2021  |   Okunma Sayısı: 334  |  İndirilme Sayısı: 448


Özet

Eğitimde ve Psikolojide ikili puanlanan maddelerden oluşan testler sıklıkla kullanılmaktadır. Madde tepki kuramı altında lojistik modellerle kullanılabilen bu testlerin madde parametreleri kestirilirken kestirimlerin daha keskin olmasını sağlayan bazı özellikler vardır ancak testlerin uygulandığı gruplar bu özellikleri her zaman sağlayamayabilir. Bu araştırmanın amacı, ikili puanlanan maddelerden oluşan bir veri setinin 2 parametreli lojistik (2PL) model ile analizinde veri setinin çeşitli özelliklerinin parametre kestirimlerinin keskinliğine olan etkilerini incelemektir. Bu araştırma, ikili puanlanan testlerden elde edilen yetenek parametrelerinin normal dağılmadığı durumların ve örneklem büyüklüğünün parametre kestirimlerinin keskinliğini nasıl etkileyeceğini açıklayacağından önemlidir. Araştırmanın amacı doğrultusunda çarpıklık katsayıları 2,00, 1,00, 0,00, -1,00 ve -2,00 olan ve 250, 500, 1,000 ve 2,000 örneklem büyüklüklerinde veriler ve uzunluğu 30 maddeden oluşan bir test için madde parametreleri R programlama dilinde üretilmiştir. Üretilen her bir veri seti için 100 replikasyon gerçekleştirilmiş ve madde parametrelerinin kestirimleri R programlama dili kullanılarak mirt paketinde marginal maximum xi likelihood (MML) kestirim yöntemi yardımıyla gerçekleştirilmiştir. Parametre kestirim keskinliğini değerlendirmek içinse hata kareleri ortalamasının karekökü (root mean squared error-RMSE) ve Bias istatistikleri kullanılmıştır. Araştırmanın bulgularında çarpıklık katsayıları mutlak değerce büyüdüğünde a parametreleri için RMSE değerlerinin büyüdüğü ve Bias değerlerinin sıfırdan uzaklaştığı, b parametreleri için çarpıklık katsayıları mutlak değerce büyüdüğünde hemen hemen aynı RMSE ve Bias değerlerinin elde edildiği görülmüştür. Örneklem büyüklükleri arttığında a parametreleri için tüm dağılımlarda RMSE değerlerinin küçüldüğü ve Bias değerlerinin hemen hemen aynı değerlerde olduğu, b parametreleri içinse örneklem büyüklüğü arttıkça RMSE değerlerinin küçüldüğü ve Bias değerlerinin çarpıklık katsayısına göre bazen sıfıra yaklaştığı bazen de sıfırdan uzaklaştığı görülmüştür. Normal dağılımdan elde edilen sonuçlar diğer çarpıklık katsayılarına sahip dağılımlardan elde edilen sonuçlar ile karşılaştırıldığında en küçük RMSE ve sıfıra en yakın Bias değerlerini ürettiği görülmüştür

Anahtar Kelimeler: Madde Tepki Kuramı, Parametre Kestirimi, Monte Carlo Simülasyonu, Çarpık Dağılım


Bu makaleye nasıl atıf yapılır

APA 6th edition
Kose, I.A. & Basaran, I. (2021). 2 Parametreli Lojistik Modelde Normal Dağılım İhlalinin Madde Parametre Kestirimine Etkisinin İncelenmesi . Dijital Ölçme ve Değerlendirme Araştırmaları Dergisi, 1(1), 1-21. doi: 10.29329/dmer.2021.285.1

Harvard
Kose, I. and Basaran, I. (2021). 2 Parametreli Lojistik Modelde Normal Dağılım İhlalinin Madde Parametre Kestirimine Etkisinin İncelenmesi . Dijital Ölçme ve Değerlendirme Araştırmaları Dergisi, 1(1), pp. 1-21.

Chicago 16th edition
Kose, Ibrahim Alper and Ismail Basaran (2021). "2 Parametreli Lojistik Modelde Normal Dağılım İhlalinin Madde Parametre Kestirimine Etkisinin İncelenmesi ". Dijital Ölçme ve Değerlendirme Araştırmaları Dergisi 1 (1):1-21. doi:10.29329/dmer.2021.285.1.

Kaynakça
  1. Abdel-fattah, A. A. (1994, Nisan). Comparing BILOG and LOGIST Estimates for Normal, Truncated Normal, and Beta Ability Distributions. Amerikan Eğitim Araştırmaları Derneği yıllık toplantısında sunulan bildiri, New Orleans, LA. (ERIC Belge Çoğaltma Servisi No. ED374158) [Google Scholar]
  2. Akour, M. & AL-Omari, H. (2013). Empirical Investigation of the Stability of IRT Item-Parameters Estimation. International Online Journal of Educational Sciences, 5(2), 291-301. [Google Scholar]
  3. Boulet, J. R. (1996). The Effect of NonNormal Ability Distributions on IRT Parameter Estimation Usin Full-Information and Limited-Information Methods. (Yayımlanmamış doktora tezi). University of Ottowa/Faculty of Education, Ottowa. [Google Scholar]
  4. Browne, M.W. & Cudeck, R. (1993). Alternative Ways of Assessing Model Fit. Bollen, K.A. & Long, J.S.. Testing Structural Equation Models. Newbury Park, CA:Sage kitabından [Google Scholar]
  5. Bulut, O. & Sünbül, Ö. (2017). Monte Carlo Simulation Studies in Item Response Theory with the R Programming Language. Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi, 8(3), 266-287. [Google Scholar]
  6. Chalmers, R. P. (2012). mirt:A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. [Google Scholar]
  7. Crocker, L. & Algina, J. (2008). Introduction to Classical and Modern Test Theory. Mason, Ohio: Cengage Learning. [Google Scholar]
  8. de Ayala, R. J. (2009). The Theory and Practice of Item Response Theory. New York, NY: The Guilford Press. [Google Scholar]
  9. DeMars. C. (2003). Sample Size and the Recovery of Nominal Response Model Item Parameters. Applied Psyhcological Measurement, 27(4), 275-288. [Google Scholar]
  10. Drasgow, F. (1989, Mart). An Evaluation of Marginal Maximum Likelihood Estimation for the Two-Parameter Logistic Model. Applied Psychological Measurement, 13(1), 77-90. [Google Scholar]
  11. Ebel, R. L. & Frisbie, D. A. (1991). Essentials of Educational Measurement (5. baskı). New Delhi: Prentice-Hall. [Google Scholar]
  12. Eser, D. Ç. & Gelbal, S. (2015). Farklı Boyutluluk Özelliklerindeki Basit ve Karmaşık Yapılı Testlerin Çok Boyutlu Madde Tepki Kuramına Dayalı Parametre Kestirimlerinin İncelenmesi. Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi, 6(2), 331-350. [Google Scholar]
  13. Feinberg, R. A. & Rubright, J. D. (2016, Haziran). Conducting Simulation Studies in Psychometrics. Educational Measurement: Issues and Practice, 35(2), 36-49. [Google Scholar]
  14. Finch, W. H. & French, B. F. (2019). Educational and Psychological Measurement. New York, NY: Routledge. [Google Scholar]
  15. Harwell, M., Stone, C. A., Hsu, Tse-Chi. & Kirişçi, L. (1996, Haziran). Monte Carlo Studies in Item Response Theory. Applied Psychological Measurement, 20(2), 101-125. [Google Scholar]
  16. Hulin, C. L., Lissak, R. I. & Drasgow, F. (1982). Recovery of Two- and Three-Parameter Logistic Item Characteristic Curves: A Monte Carlo Study. Applied Psychological Measurement, 6(3), 249-260. [Google Scholar]
  17. Karadavut, T. (2017). Estimation of Item Response Theory Models When Ability is Uniformly Distributed. The Eurasia Proceedings of Educational and Social Science, 7(), 30-37. [Google Scholar]
  18. Kieftenbeld, V. & Natesan, P. (2012). Recovery of Graded Response Model Parameters: A Comparison of Marginal Maximum Likelihood and Markov Chain Monte Carlo Estimation. Applied Psychological Measurement, 36(5), 399-419. [Google Scholar]
  19. Lord, F. M. (1968). An Analysis of the Verbal Scholastic Aptitude Test Using Birnbaum’s Three-Parameter Logistic Model. Educational and Psychological Measurement, 28(4), 989-1020. [Google Scholar]
  20. Lord, F. M. & Novic, M. R. (2008). Statistical Theories of Mental Test Scores. USA: Information Age Publishing. [Google Scholar]
  21. Luecht, R. & Ackerman, T. A. (2018, Ocak). A Technical Note on IRT Simulation Studies: Dealing With Truth, Estimates, Observed Data, and Residuals. Educational Measurement: Issues and Practice, 37(3), 65-76. [Google Scholar]
  22. Marso, R. N. & Pigge, F. L. (1988, Nisan). An Analysis of Teacher-Made Tests: Testing Practices, Cognitive Demands, and Item Construction Errors. Ulusal Eğitimde Ölçme Kurulu (NCME) Yıllık Toplantısında sunulmuş bildiri, New Orleans, LA. [Google Scholar]
  23. Meyers, L. S. & Grossen, N. E. (1974). Behavioral Science: Theory, Procedure, and Design. USA: W. H. Freeman and Company. [Google Scholar]
  24. Olmuş, H., Nazman, E. & Erbaş, S. (2016). An Evaluation of the Two Parameter (2-PL) IRT Models Through a Simulation Study. Gazi University Journal of Science, 30(1), 235-249. [Google Scholar]
  25. Reise, S. P. & Yu, J. (1990). Parameter Recovery in the Graded Response Model Using MULTILOG. Journal of Educational Measurement, 27(2), 133-144. [Google Scholar]
  26. Sass, D. A., Schmitt, T. A. & Walker, C. M. (2008, Nisan). Estimating Non-Normal Latent Trait Distributions within Item Response Theory Using True and Estimated Item Parameters. Applied Measurement in Education, 21(1), 65-88. [Google Scholar]
  27. Seong, Tae-Je. (1990, Eylül). Sensitivity of Marginal Maximum Likelihood Estimation of Item and Ability Parameters to the Characteristics of the Prior Ability Distributions. Applied Psychological Measurement, 14(3), 299-311. [Google Scholar]
  28. Stone, C. A. (1992, Mart). Recovery of Marginal Maximum Likelihood Estimates in the Two-Parameter Logistic Response Model: An Evaluation of MULTILOG. Applied Psychological Measurement, 16(1), 1-16. [Google Scholar]
  29. Sünbül, Ö. & Bulut, O. (2017). Monte Carlo Simulation Studies in Item Response Theory with the R Programming Language. Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi, 8(3), 266-287. [Google Scholar]
  30. Swaminathan, H. & Gifford, J. A. (Nisan,1979). Estimation of Parameters in the Three-Parameter Latent Trait Model. Amerikan Eğitim Araştırmaları Birliği (AERA) ve Ulusal Eğitimde Ölçme Kurulu (NCME)’nun düzenlediği “Pratik Ölçme Sorunlarını Çözme Aracı Olarak Gizil Özellikler Modellerinin Keşfi (Explorations of Latent Trait Models as a Means of Solving Practical Measurement Problems)” başlıklı sempozyumda sunulmuş bildiri, San Francisco, CA. [Google Scholar]
  31. Şahin, A. & Anıl, D. (2017). The Effects of Test Length and Sample Size on Item Parameters in Item Response Theory. Educational Science: Theory & Practice, 17(1), 321-335. [Google Scholar]
  32. Turgut, M. F. & Baykul, Y. (2015). Eğitimde Ölçme ve Değerlendirme (7.baskı). Ankara: Pegem Akademi. [Google Scholar]
  33. Uysal, İ., Ertuna, L., Ertaş, F. G. & Kelecioğlu, H. (2019). Performance Based on Ability Estimation of the Methods of Detecting Differential Item Functioning: A Simulation Study. Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi, 10(2), 133-148. [Google Scholar]
  34. Yen, W. M. (1987, Haziran). A Comparison of the Efficiency and Accuracy of BILOG and LOGIST. Psychometrika, 52(2), 275-291. [Google Scholar]
  35. Yıldırım, Y. (2015). Derecelendirilmiş Tepki Modeli Temelli Parametre Kestiriminde Normalliğin İhlalinin Ölçme Kesinliğine Etkisi. Yüksek Lisans Tezi, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara. [Google Scholar]
  36. Zwinderman, A. H. & van den Wollenberg, A. L. (1990). Robustness of Marginal Maximum Likelihood Estimation in the Rasch Model. Applied Psychological Measurement, 14(1), 73-81. [Google Scholar]